Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Microbiol Spectr ; 12(2): e0256222, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38230952

RESUMO

Assembly of infectious hepatitis C virus (HCV) particles requires multiple cellular proteins including for instance apolipoprotein E (ApoE). To describe these protein-protein interactions, we performed an affinity purification mass spectrometry screen of HCV-infected cells. We used functional viral constructs with epitope-tagged envelope protein 2 (E2), protein (p) 7, or nonstructural protein 4B (NS4B) as well as cells expressing a tagged variant of ApoE. We also evaluated assembly stage-dependent remodeling of protein complexes by using viral mutants carrying point mutations abrogating particle production at distinct steps of the HCV particle production cascade. Five ApoE binding proteins, 12 p7 binders, 7 primary E2 interactors, and 24 proteins interacting with NS4B were detected. Cell-derived PREB, STT3B, and SPCS2 as well as viral NS2 interacted with both p7 and E2. Only GTF3C3 interacted with E2 and NS4B, highlighting that HCV assembly and replication complexes exhibit largely distinct interactomes. An HCV core protein mutation, preventing core protein decoration of lipid droplets, profoundly altered the E2 interactome. In cells replicating this mutant, E2 interactions with HSPA5, STT3A/B, RAD23A/B, and ZNF860 were significantly enhanced, suggesting that E2 protein interactions partly depend on core protein functions. Bioinformatic and functional studies including STRING network analyses, RNA interference, and ectopic expression support a role of Rad23A and Rad23B in facilitating HCV infectious virus production. Both Rad23A and Rad23B are involved in the endoplasmic reticulum (ER)-associated protein degradation (ERAD). Collectively, our results provide a map of host proteins interacting with HCV assembly proteins, and they give evidence for the involvement of ER protein folding machineries and the ERAD pathway in the late stages of the HCV replication cycle.IMPORTANCEHepatitis C virus (HCV) establishes chronic infections in the majority of exposed individuals. This capacity likely depends on viral immune evasion strategies. One feature likely contributing to persistence is the formation of so-called lipo-viro particles. These peculiar virions consist of viral structural proteins and cellular lipids and lipoproteins, the latter of which aid in viral attachment and cell entry and likely antibody escape. To learn about how lipo-viro particles are coined, here, we provide a comprehensive overview of protein-protein interactions in virus-producing cells. We identify numerous novel and specific HCV E2, p7, and cellular apolipoprotein E-interacting proteins. Pathway analyses of these interactors show that proteins participating in processes such as endoplasmic reticulum (ER) protein folding, ER-associated protein degradation, and glycosylation are heavily engaged in virus production. Moreover, we find that the proteome of HCV replication sites is distinct from the assembly proteome, suggesting that transport process likely shuttles viral RNA to assembly sites.


Assuntos
Hepacivirus , Hepatite C , Humanos , Hepacivirus/genética , Proteínas não Estruturais Virais/genética , Proteoma/metabolismo , Linhagem Celular , Apolipoproteínas E/metabolismo , Apolipoproteínas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Enzimas Reparadoras do DNA/metabolismo
3.
Med Microbiol Immunol ; 212(5): 323-337, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37561225

RESUMO

Since late 2021, the variant landscape of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been dominated by the variant of concern (VoC) Omicron and its sublineages. We and others have shown that the detection of Omicron-BA.1 and -BA.2-positive respiratory specimens by rapid antigen tests (RATs) is impaired compared to Delta VoC-containing samples. Here, in a single-center retrospective laboratory study, we evaluated the performance of ten most commonly used RATs for the detection of Omicron-BA.4 and -BA.5 infections. We used 171 respiratory swab specimens from SARS-CoV-2 RNA-positive patients, of which 71 were classified as BA.4 and 100 as BA.5. All swabs were collected between July and September 2022. 50 SARS-CoV-2 PCR-negative samples from healthy individuals, collected in October 2022, showed high specificity in 9 out of 10 RATs. When assessing analytical sensitivity using clinical specimens, the 50% limit of detection (LoD50) ranged from 7.6 × 104 to 3.3 × 106 RNA copies subjected to the RATs for BA.4 compared to 6.8 × 104 to 3.0 × 106 for BA.5. Overall, intra-assay differences for the detection of these two Omicron subvariants were not significant for both respiratory swabs and tissue culture-expanded virus isolates. In contrast, marked heterogeneity was observed among the ten RATs: to be positive in these point-of-care tests, up to 443-fold (BA.4) and up to 56-fold (BA.5) higher viral loads were required for the worst performing RAT compared to the best performing RAT. True-positive rates for Omicron-BA.4- or -BA.5-containing specimens in the highest viral load category (Ct values < 25) ranged from 94.3 to 34.3%, dropping to 25.6 to 0% for samples with intermediate Ct values (25-30). We conclude that the high heterogeneity in the performance of commonly used RATs remains a challenge for the general public to obtain reliable results in the evolving Omicron subvariant-driven pandemic.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , RNA Viral , Estudos Retrospectivos , COVID-19/diagnóstico , Pandemias
4.
Med Microbiol Immunol ; 212(5): 307-322, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37561226

RESUMO

Diagnostic tests for direct pathogen detection have been instrumental to contain the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) pandemic. Automated, quantitative, laboratory-based nucleocapsid antigen (Ag) tests for SARS-CoV-2 have been launched alongside nucleic acid-based test systems and point-of-care (POC) lateral-flow Ag tests. Here, we evaluated four commercial Ag tests on automated platforms for the detection of different sublineages of the SARS-CoV-2 Omicron variant of concern (VoC) (B.1.1.529) in comparison with "non-Omicron" VoCs. A total of 203 Omicron PCR-positive respiratory swabs (53 BA.1, 48 BA.2, 23 BQ.1, 39 XBB.1.5 and 40 other subvariants) from the period February to March 2022 and from March 2023 were examined. In addition, tissue culture-expanded clinical isolates of Delta (B.1.617.2), Omicron-BA.1, -BF.7, -BN.1 and -BQ.1 were studied. These results were compared to previously reported data from 107 clinical "non-Omicron" samples from the end of the second pandemic wave (February to March 2021) as well as cell culture-derived samples of wildtype (wt) EU-1 (B.1.177), Alpha VoC (B.1.1.7) and Beta VoC (B.1.351)). All four commercial Ag tests were able to detect at least 90.9% of Omicron-containing samples with high viral loads (Ct < 25). The rates of true-positive test results for BA.1/BA.2-positive samples with intermediate viral loads (Ct 25-30) ranged between 6.7% and 100.0%, while they dropped to 0 to 15.4% for samples with low Ct values (> 30). This heterogeneity was reflected also by the tests' 50%-limit of detection (LoD50) values ranging from 44,444 to 1,866,900 Geq/ml. Respiratory samples containing Omicron-BQ.1/XBB.1.5 or other Omicron subvariants that emerged in 2023 were detected with enormous heterogeneity (0 to 100%) for the intermediate and low viral load ranges with LoD50 values between 23,019 and 1,152,048 Geq/ml. In contrast, detection of "non-Omicron" samples was more sensitive, scoring positive in 35 to 100% for the intermediate and 1.3 to 32.9% of cases for the low viral loads, respectively, corresponding to LoD50 values ranging from 6181 to 749,792 Geq/ml. All four assays detected cell culture-expanded VoCs Alpha, Beta, Delta and Omicron subvariants carrying up to six amino acid mutations in the nucleocapsid protein with sensitivities comparable to the non-VoC EU-1. Overall, automated quantitative SARS-CoV-2 Ag assays are not more sensitive than standard rapid antigen tests used in POC settings and show a high heterogeneity in performance for VoC recognition. The best of these automated Ag tests may have the potential to complement nucleic acid-based assays for SARS-CoV-2 diagnostics in settings not primarily focused on the protection of vulnerable groups. In light of the constant emergence of new Omicron subvariants and recombinants, most recently the XBB lineage, these tests' performance must be regularly re-evaluated, especially when new VoCs carry mutations in the nucleocapsid protein or immunological and clinical parameters change.


Assuntos
COVID-19 , Ácidos Nucleicos , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Proteínas do Nucleocapsídeo
5.
Emerg Microbes Infect ; 12(2): 2245916, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37585712

RESUMO

ABSTRACTGlobal and even national genome surveillance approaches do not provide the resolution necessary for rapid and accurate direct response by local public health authorities. Hence, a regional network of microbiological laboratories in collaboration with the health departments of all districts of the German federal state of Mecklenburg-Western Pomerania (M-V) was formed to investigate the regional molecular epidemiology of circulating SARS-CoV-2 lineages between 11/2020 and 03/2022. More than 4750 samples from all M-V counties were sequenced using Illumina and Nanopore technologies. Overall, 3493 (73.5%) sequences fulfilled quality criteria for time-resolved and/or spatially-resolved maximum likelihood phylogenic analyses and k-mean/ median clustering (KMC). We identified 116 different Pangolin virus lineages that can be assigned to 16 Nextstrain clades. The ten most frequently detected virus lineages belonged to B.1.1.7, AY.122, AY.43, BA.1, B.1.617.2, BA.1.1, AY.9.2, AY.4, P.1 and AY.126. Time-resolved phylogenetic analyses showed the occurrence of virus clades as determined worldwide, but with a substantial delay of one to two months. Further spatio-temporal phylogenetic analyses revealed a regional outbreak of a Gamma variant limited to western M-V counties. Finally, KMC elucidated a successive introduction of the various virus lineages into M-V, possibly triggered by vacation periods with increased (inter-) national travel activities. The COVID-19 pandemic in M-V was shaped by a combination of several SARS-CoV-2 introductions, lockdown measures, restrictive quarantine of patients and the lineage specific replication rate. Complementing global and national surveillance, regional surveillance adds value by providing a higher level of surveillance resolution tailored to local health authorities.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Pandemias , Filogenia , COVID-19/epidemiologia , Controle de Doenças Transmissíveis , Genômica
6.
Life Sci Alliance ; 6(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37558422

RESUMO

RIG-I recognizes viral dsRNA and activates a cell-autonomous antiviral response. Upon stimulation, it triggers a signaling cascade leading to the production of type I and III IFNs. IFNs are secreted and signal to elicit the expression of IFN-stimulated genes, establishing an antiviral state of the cell. The topology of this pathway has been studied intensively, however, its exact dynamics are less understood. Here, we employed electroporation to synchronously activate RIG-I, enabling us to characterize cell-intrinsic innate immune signaling at a high temporal resolution. Employing IFNAR1/IFNLR-deficient cells, we could differentiate primary RIG-I signaling from secondary signaling downstream of the IFN receptors. Based on these data, we developed a comprehensive mathematical model capable of simulating signaling downstream of dsRNA recognition by RIG-I and the feedback and signal amplification by IFN. We further investigated the impact of viral antagonists on signaling dynamics. Our work provides a comprehensive insight into the signaling events that occur early upon virus infection and opens new avenues to study and disentangle the complexity of the host-virus interface.


Assuntos
Proteína DEAD-box 58 , Receptores Imunológicos , Transdução de Sinais , Viroses , Linhagem Celular , Receptores Imunológicos/imunologia , Proteína DEAD-box 58/imunologia , Viroses/imunologia
7.
J Thromb Haemost ; 21(9): 2519-2527, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37394120

RESUMO

BACKGROUND: Rapid diagnosis and treatment has improved outcome of patients with vaccine-induced immune thrombocytopenia and thrombosis (VITT). However, after the acute episode, many questions on long-term management of VITT remained unanswered. OBJECTIVES: To analyze, in patients with VITT, the long-term course of anti-platelet factor 4 (PF4) antibodies; clinical outcomes, including risk of recurrent thrombosis and/or thrombocytopenia; and the effects of new vaccinations. METHODS: 71 patients with serologically confirmed VITT in Germany were enrolled into a prospective longitudinal study and followed for a mean of 79 weeks from March 2021 to January 2023. The course of anti-PF4 antibodies was analyzed by consecutive anti-PF4/heparin immunoglobulin G enzyme-linked immunosorbent assay and PF4-enhanced platelet activation assay. RESULTS: Platelet-activating anti-PF4 antibodies became undetectable in 62 of 71 patients (87.3%; 95% CI, 77.6%-93.2%). In 6 patients (8.5%), platelet-activating anti-PF4 antibodies persisted for >18 months. Five of 71 patients (7.0%) showed recurrent episodes of thrombocytopenia and/or thrombosis; in 4 of them (80.0%), alternative explanations beside VITT were present. After further COVID-19 vaccination with a messenger RNA vaccine, no reactivation of platelet-activating anti-PF4 antibodies or new thrombosis was observed. No adverse events occurred in our patients subsequently vaccinated against influenza, tick-borne encephalitis, varicella, tetanus, diphtheria, pertussis, and polio. No new thrombosis occurred in the 24 patients (33.8%) who developed symptomatic SARS-CoV-2 infection following recovery from acute VITT. CONCLUSION: Once the acute episode of VITT has passed, patients appear to be at low risk for recurrent thrombosis and/or thrombocytopenia.


Assuntos
COVID-19 , Vacinas contra Influenza , Púrpura Trombocitopênica Idiopática , Trombocitopenia , Trombose , Humanos , Púrpura Trombocitopênica Idiopática/induzido quimicamente , Púrpura Trombocitopênica Idiopática/diagnóstico , Vacinas contra COVID-19/efeitos adversos , Estudos Longitudinais , Estudos Prospectivos , SARS-CoV-2 , Trombocitopenia/induzido quimicamente , Trombose/etiologia
8.
Front Cardiovasc Med ; 10: 1144191, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37252117

RESUMO

Introduction: Heart rate variability (HRV), defined as the variability of consecutive heart beats, is an important biomarker for dysregulations of the autonomic nervous system (ANS) and is associated with the development, course, and outcome of a variety of mental and physical health problems. While guidelines recommend using 5 min electrocardiograms (ECG), recent studies showed that 10 s might be sufficient for deriving vagal-mediated HRV. However, the validity and applicability of this approach for risk prediction in epidemiological studies is currently unclear to be used. Methods: This study evaluates vagal-mediated HRV with ultra-short HRV (usHRV) based on 10 s multichannel ECG recordings of N = 4,245 and N = 2,392 participants of the Study of Health in Pomerania (SHIP) from two waves of the SHIP-TREND cohort, additionally divided into a healthy and health-impaired subgroup. Association of usHRV with HRV derived from long-term ECG recordings (polysomnography: 5 min before falling asleep [N = 1,041]; orthostatic testing: 5 min of rest before probing an orthostatic reaction [N = 1,676]) and their validity with respect to demographic variables and depressive symptoms were investigated. Results: High correlations (r = .52-.75) were revealed between usHRV and HRV. While controlling for covariates, usHRV was the strongest predictor for HRV. Furthermore, the associations of usHRV and HRV with age, sex, obesity, and depressive symptoms were similar. Conclusion: This study provides evidence that usHRV derived from 10 s ECG might function as a proxy of vagal-mediated HRV with similar characteristics. This allows the investigation of ANS dysregulation with ECGs that are routinely performed in epidemiological studies to identify protective and risk factors for various mental and physical health problems.

9.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37108370

RESUMO

Given the substantial correlation between early diagnosis and prolonged patient survival in HCV patients, it is vital to identify a reliable and accessible biomarker. The purpose of this research was to identify accurate miRNA biomarkers to aid in the early diagnosis of HCV and to identify key target genes for anti-hepatic fibrosis therapeutics. The expression of 188 miRNAs in 42 HCV liver patients with different functional states and 23 normal livers were determined using RT-qPCR. After screening out differentially expressed miRNA (DEmiRNAs), the target genes were predicted. To validate target genes, an HCV microarray dataset was subjected to five machine learning algorithms (Random Forest, Adaboost, Bagging, Boosting, XGBoost) and then, based on the best model, importance features were selected. After identification of hub target genes, to evaluate the potency of compounds that might hit key hub target genes, molecular docking was performed. According to our data, eight DEmiRNAs are associated with early stage and eight DEmiRNAs are linked to a deterioration in liver function and an increase in HCV severity. In the validation phase of target genes, model evaluation revealed that XGBoost (AUC = 0.978) outperformed the other machine learning algorithms. The results of the maximal clique centrality algorithm determined that CDK1 is a hub target gene, which can be hinted at by hsa-miR-335, hsa-miR-140, hsa-miR-152, and hsa-miR-195. Because viral proteins boost CDK1 activation for cell mitosis, pharmacological inhibition may have anti-HCV therapeutic promise. The strong affinity binding of paeoniflorin (-6.32 kcal/mol) and diosmin (-6.01 kcal/mol) with CDK1 was demonstrated by molecular docking, which may result in attractive anti-HCV compounds. The findings of this study may provide significant evidence, in the context of the miRNA biomarkers, for early-stage HCV diagnosis. In addition, recognized hub target genes and small molecules with high binding affinity may constitute a novel set of therapeutic targets for HCV.


Assuntos
MicroRNAs , Humanos , Simulação de Acoplamento Molecular , MicroRNAs/genética , MicroRNAs/metabolismo , Biomarcadores , Algoritmos , Diagnóstico Precoce
10.
PLoS Comput Biol ; 19(4): e1010423, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37014904

RESUMO

Plus-strand RNA viruses are the largest group of viruses. Many are human pathogens that inflict a socio-economic burden. Interestingly, plus-strand RNA viruses share remarkable similarities in their replication. A hallmark of plus-strand RNA viruses is the remodeling of intracellular membranes to establish replication organelles (so-called "replication factories"), which provide a protected environment for the replicase complex, consisting of the viral genome and proteins necessary for viral RNA synthesis. In the current study, we investigate pan-viral similarities and virus-specific differences in the life cycle of this highly relevant group of viruses. We first measured the kinetics of viral RNA, viral protein, and infectious virus particle production of hepatitis C virus (HCV), dengue virus (DENV), and coxsackievirus B3 (CVB3) in the immuno-compromised Huh7 cell line and thus without perturbations by an intrinsic immune response. Based on these measurements, we developed a detailed mathematical model of the replication of HCV, DENV, and CVB3 and showed that only small virus-specific changes in the model were necessary to describe the in vitro dynamics of the different viruses. Our model correctly predicted virus-specific mechanisms such as host cell translation shut off and different kinetics of replication organelles. Further, our model suggests that the ability to suppress or shut down host cell mRNA translation may be a key factor for in vitro replication efficiency, which may determine acute self-limited or chronic infection. We further analyzed potential broad-spectrum antiviral treatment options in silico and found that targeting viral RNA translation, such as polyprotein cleavage and viral RNA synthesis, may be the most promising drug targets for all plus-strand RNA viruses. Moreover, we found that targeting only the formation of replicase complexes did not stop the in vitro viral replication early in infection, while inhibiting intracellular trafficking processes may even lead to amplified viral growth.


Assuntos
Hepatite C , Vírus de RNA , Humanos , Antivirais/farmacologia , Replicação Viral/fisiologia , RNA Viral/genética , Modelos Teóricos
11.
Med Microbiol Immunol ; 212(1): 13-23, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36370197

RESUMO

During 2022, the COVID-19 pandemic has been dominated by the variant of concern (VoC) Omicron (B.1.1.529) and its rapidly emerging subvariants, including Omicron-BA.1 and -BA.2. Rapid antigen tests (RATs) are part of national testing strategies to identify SARS-CoV-2 infections on site in a community setting or to support layman's diagnostics at home. We and others have recently demonstrated an impaired RAT detection of infections caused by Omicron-BA.1 compared to Delta. Here, we evaluated the performance of five SARS-CoV-2 RATs in a single-centre laboratory study examining a total of 140 SARS-CoV-2 PCR-positive respiratory swab samples, 70 Omicron-BA.1 and 70 Omicron-BA.2, as well as 52 SARS-CoV-2 PCR-negative swabs collected from March 8th until April 10th, 2022. One test did not meet minimal criteria for specificity. In an assessment of the analytical sensitivity in clinical specimen, the 50% limit of detection (LoD50) ranged from 4.2 × 104 to 9.2 × 105 RNA copies subjected to the RAT for Omicron-BA.1 compared to 1.3 × 105 to 1.5 × 106 for Omicron-BA.2. Overall, intra-assay differences for the detection of Omicron-BA.1-containing and Omicron-BA.2-containing samples were non-significant, while a marked overall heterogeneity among the five RATs was observed. To score positive in these point-of-care tests, up to 22-fold (LoD50) or 68-fold (LoD95) higher viral loads were required for the worst performing compared to the best performing RAT. The rates of true-positive test results for these Omicron subvariant-containing samples in the highest viral load category (Ct values < 25) ranged between 44.7 and 91.1%, while they dropped to 8.7 to 22.7% for samples with intermediate Ct values (25-30). In light of recent reports on the emergence of two novel Omicron-BA.2 subvariants, Omicron-BA.2.75 and BJ.1, awareness must be increased for the overall reduced detection rate and marked differences in RAT performance for these Omicron subvariants.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Pandemias , Testes Imediatos , Reação em Cadeia da Polimerase
12.
Infection ; 51(4): 909-919, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36355269

RESUMO

PURPOSE: To investigate the perception of SARS-CoV-2 detection methods, information sources, and opinions on appropriate behavior after receiving negative or positive test results. METHODS: In a questionnaire-based, cross-sectional study conducted between September 1 and November 17, 2021, epidemiological, behavioral, and COVID-19-related data were acquired from the public in Munich, Germany. RESULTS: Most of the 1388 participants obtained information from online media (82.8%) as well as state and federal authorities (80.3%). 93.4% believed in the accuracy of SARS-CoV-2 PCR testing and 41.2% in the accuracy of rapid antigen tests (RATs). However, RATs were preferred for testing (59.1%) over PCR (51.1%). 24.0% of all individuals were willing to ignore hygiene measures and 76.9% were less afraid of SARS-CoV-2 transmission after receiving a negative PCR test (5.9% and 48.8% in case of a negative RAT). 28.8% reported not to self-isolate after receiving a positive RAT. Multivariate analyses revealed that non-vaccinated individuals relied less on information from governmental authorities (p = 0.0004) and more on social media (p = 0.0216), disbelieved in the accuracy of the PCR test (p ≤ 0.0001) while displaying strong preference towards using RATs (p ≤ 0.0001), were more willing to abandon pandemic-related hygiene measures (p ≤ 0.0001), less afraid of transmitting SARS-CoV-2 after a negative RAT (p ≤ 0.0001), and less likely to isolate after a positive RAT (p ≤ 0.0001). CONCLUSION: Insights into preferred information sources as well as perception, preferences, and behavior related to SARS-CoV-2 testing and hygiene measures are key to refining public health information and surveillance campaigns. Non-vaccinated individuals' divergent believes and behaviors possibly increase their COVID-19 risk.


Assuntos
COVID-19 , Vacinas , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/prevenção & controle , Estudos Transversais , Teste para COVID-19 , Percepção
13.
Clin Microbiol Infect ; 29(2): 225-232, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36028089

RESUMO

OBJECTIVES: Antigen rapid diagnostic tests (RDTs) for SARS coronavirus 2 (SARS-CoV-2) are quick, widely available, and inexpensive. Consequently, RDTs have been established as an alternative and additional diagnostic strategy to quantitative reverse transcription polymerase chain reaction (RT-qPCR). However, reliable clinical and large-scale performance data specific to a SARS-CoV-2 virus variant of concern (VOC) are limited, especially for the Omicron VOC. The aim of this study was to compare RDT performance among different VOCs. METHODS: This single-centre prospective performance assessment compared RDTs from three manufacturers (NADAL, Panbio, MEDsan) with RT-qPCR including deduced standardized viral load from oropharyngeal swabs for detection of SARS-CoV-2 in a clinical point-of-care setting from November 2020 to January 2022. RESULTS: Among 35 479 RDT/RT-qPCR tandems taken from 26 940 individuals, 164 of the 426 SARS-CoV-2 positive samples tested true positive with an RDT corresponding to an RDT sensitivity of 38.50% (95% CI, 34.00-43.20%), with an overall specificity of 99.67% (95% CI, 99.60-99.72%). RDT sensitivity depended on viral load, with decreasing sensitivity accompanied by descending viral load. VOC-dependent sensitivity assessment showed a sensitivity of 42.86% (95% CI, 32.82-53.52%) for the wild-type SARS-CoV-2, 43.42% (95% CI, 32.86-54.61%) for the Alpha VOC, 37.67% (95% CI, 30.22-45.75%) for the Delta VOC, and 33.67% (95% CI, 25.09-43.49%) for the Omicron VOC. Sensitivity in samples with high viral loads of ≥106 SARS-CoV-2 RNA copies per mL was significantly lower in the Omicron VOC (50.00%; 95% CI, 36.12-63.88%) than in the wild-type SARS-CoV-2 (79.31%; 95% CI, 61.61-90.15%; p 0.015). DISCUSSION: RDT sensitivity for detection of the Omicron VOC is reduced in individuals infected with a high viral load, which curtails the effectiveness of RDTs. This aspect furthert: limits the use of RDTs, although RDTs are still an irreplaceable diagnostic tool for rapid, economic point-of-care and extensive SARS-CoV-2 screening.


Assuntos
COVID-19 , Sistemas Automatizados de Assistência Junto ao Leito , Humanos , Estudos Prospectivos , RNA Viral , COVID-19/diagnóstico , SARS-CoV-2/genética , Sensibilidade e Especificidade
14.
Front Aging ; 4: 1258184, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38500495

RESUMO

Changes in DNA methylation patterning have been reported to be a key hallmark of aged human skin. The altered DNA methylation patterns are correlated with deregulated gene expression and impaired tissue functionality, leading to the well-known skin aging phenotype. Searching for small molecules, which correct the aged methylation pattern therefore represents a novel and attractive strategy for the identification of anti-aging compounds. DNMT1 maintains epigenetic information by copying methylation patterns from the parental (methylated) strand to the newly synthesized strand after DNA replication. We hypothesized that a modest inhibition of this process promotes the restoration of the ground-state epigenetic pattern, thereby inducing rejuvenating effects. In this study, we screened a library of 1800 natural substances and 640 FDA-approved drugs and identified the well-known antioxidant and anti-inflammatory molecule dihydromyricetin (DHM) as an inhibitor of the DNA methyltransferase DNMT1. DHM is the active ingredient of several plants with medicinal use and showed robust inhibition of DNMT1 in biochemical assays. We also analyzed the effect of DHM in cultivated keratinocytes by array-based methylation profiling and observed a moderate, but significant global hypomethylation effect upon treatment. To further characterize DHM-induced methylation changes, we used published DNA methylation clocks and newly established age predictors to demonstrate that the DHM-induced methylation change is associated with a reduction in the biological age of the cells. Further studies also revealed re-activation of age-dependently hypermethylated and silenced genes in vivo and a reduction in age-dependent epidermal thinning in a 3-dimensional skin model. Our findings thus establish DHM as an epigenetic inhibitor with rejuvenating effects for aged human skin.

15.
Front Aging ; 4: 1258183, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38274286

RESUMO

Aging is a complex process characterized by the gradual decline of physiological functions, leading to increased vulnerability to age-related diseases and reduced quality of life. Alterations in DNA methylation (DNAm) patterns have emerged as a fundamental characteristic of aged human skin, closely linked to the development of the well-known skin aging phenotype. These changes have been correlated with dysregulated gene expression and impaired tissue functionality. In particular, the skin, with its visible manifestations of aging, provides a unique model to study the aging process. Despite the importance of epigenetic age clocks in estimating biological age based on the correlation between methylation patterns and chronological age, a second-generation epigenetic age clock, which correlates DNAm patterns with a particular phenotype, specifically tailored to skin tissue is still lacking. In light of this gap, we aimed to develop a novel second-generation epigenetic age clock explicitly designed for skin tissue to facilitate a deeper understanding of the factors contributing to individual variations in age progression. To achieve this, we used methylation patterns from more than 370 female volunteers and developed the first skin-specific second-generation epigenetic age clock that accurately predicts the skin aging phenotype represented by wrinkle grade, visual facial age, and visual age progression, respectively. We then validated the performance of our clocks on independent datasets and demonstrated their broad applicability. In addition, we integrated gene expression and methylation data from independent studies to identify potential pathways contributing to skin age progression. Our results demonstrate that our epigenetic age clock, VisAgeX, specifically predicting visual age progression, not only captures known biological pathways associated with skin aging, but also adds novel pathways associated with skin aging.

16.
Front Microbiol ; 13: 979320, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338082

RESUMO

Influenza A Virus (IAV) infection followed by bacterial pneumonia often leads to hospitalization and death in individuals from high risk groups. Following infection, IAV triggers the process of viral RNA replication which in turn disrupts healthy gut microbial community, while the gut microbiota plays an instrumental role in protecting the host by evolving colonization resistance. Although the underlying mechanisms of IAV infection have been unraveled, the underlying complex mechanisms evolved by gut microbiota in order to induce host immune response following IAV infection remain evasive. In this work, we developed a novel Maximal-Clique based Community Detection algorithm for Weighted undirected Networks (MCCD-WN) and compared its performance with other existing algorithms using three sets of benchmark networks. Moreover, we applied our algorithm to gut microbiome data derived from fecal samples of both healthy and IAV-infected pigs over a sequence of time-points. The results we obtained from the real-life IAV dataset unveil the role of the microbial families Ruminococcaceae, Lachnospiraceae, Spirochaetaceae and Prevotellaceae in the gut microbiome of the IAV-infected cohort. Furthermore, the additional integration of metaproteomic data enabled not only the identification of microbial biomarkers, but also the elucidation of their functional roles in protecting the host following IAV infection. Our network analysis reveals a fast recovery of the infected cohort after the second IAV infection and provides insights into crucial roles of Desulfovibrionaceae and Lactobacillaceae families in combating Influenza A Virus infection. Source code of the community detection algorithm can be downloaded from https://github.com/AniBhar84/MCCD-WN.

17.
J Thromb Haemost ; 20(11): 2579-2586, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36006172

RESUMO

BACKGROUND: Vaccine-induced immune thrombotic thrombocytopenia (VITT) is a prothrombotic, heparin-induced thrombocytopenia (HIT)-mimicking, adverse reaction caused by platelet-activating anti-platelet factor 4 (PF4) antibodies that occurs rarely after adenovirus vector-based COVID-19 vaccination. Strength of PF4-dependent enzyme immunoassay (EIA) reactivity-judged by optical density (OD) measurements-strongly predicts platelet-activating properties of HIT antibodies in a functional test. Whether a similar relationship holds for VITT antibodies is unknown. OBJECTIVES: To evaluate probability for positive platelet activation testing for VITT antibodies based upon EIA OD reactivity; and to investigate simple approaches to minimize false-negative platelet activation testing for VITT. METHODS: All samples referred for VITT testing were systematically evaluated by semiquantitative in-house PF4/heparin-EIA (OD readings) and PF4-induced platelet activation (PIPA) testing within a cohort study. EIA-positive sera testing PIPA-negative were retested following 1/4 to 1/10 dilution. Logistic regression was performed to predict the probability of a positive PIPA per magnitude of EIA reactivity. RESULTS: Greater EIA ODs in sera from patients with suspected VITT correlated strongly with greater likelihood of PIPA reactivity. Of 61 sera (with OD values >1.0) testing negative in the PIPA, a high proportion (27/61, 44.3%) became PIPA positive when tested at 1/4 to 1/10 dilution. CONCLUSIONS: VITT serology resembles HIT in that greater EIA OD reactivity predicts higher probability of positive testing for platelet-activating antibodies. Unlike the situation with HIT antibodies, however, diluting putative VITT serum increases probability of a positive platelet activation assay, suggesting that optimal complex formation depends on the stoichiometric ratio of PF4 and anti-PF4 VITT antibodies.


Assuntos
COVID-19 , Púrpura Trombocitopênica Idiopática , Trombocitopenia , Trombose , Vacinas , Humanos , Heparina/efeitos adversos , Estudos de Coortes , Vacinas contra COVID-19 , Fator Plaquetário 4 , Trombocitopenia/induzido quimicamente , Trombocitopenia/diagnóstico , Técnicas Imunoenzimáticas , Anticorpos , Trombose/diagnóstico , Trombose/induzido quimicamente , Púrpura Trombocitopênica Idiopática/induzido quimicamente
18.
bioRxiv ; 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35923314

RESUMO

Plus-strand RNA viruses are the largest group of viruses. Many are human pathogens that inflict a socio-economic burden. Interestingly, plus-strand RNA viruses share remarkable similarities in their replication. A hallmark of plus-strand RNA viruses is the remodeling of intracellular membranes to establish replication organelles (so-called "replication factories"), which provide a protected environment for the replicase complex, consisting of the viral genome and proteins necessary for viral RNA synthesis. In the current study, we investigate pan-viral similarities and virus-specific differences in the life cycle of this highly relevant group of viruses. We first measured the kinetics of viral RNA, viral protein, and infectious virus particle production of hepatitis C virus (HCV), dengue virus (DENV), and coxsackievirus B3 (CVB3) in the immuno-compromised Huh7 cell line and thus without perturbations by an intrinsic immune response. Based on these measurements, we developed a detailed mathematical model of the replication of HCV, DENV, and CVB3 and show that only small virus-specific changes in the model were necessary to describe the in vitro dynamics of the different viruses. Our model correctly predicted virus-specific mechanisms such as host cell translation shut off and different kinetics of replication organelles. Further, our model suggests that the ability to suppress or shut down host cell mRNA translation may be a key factor for in vitro replication efficiency which may determine acute self-limited or chronic infection. We further analyzed potential broad-spectrum antiviral treatment options in silico and found that targeting viral RNA translation, especially polyprotein cleavage, and viral RNA synthesis may be the most promising drug targets for all plus-strand RNA viruses. Moreover, we found that targeting only the formation of replicase complexes did not stop the viral replication in vitro early in infection, while inhibiting intracellular trafficking processes may even lead to amplified viral growth. Author summary: Plus-strand RNA viruses comprise a large group of related and medically relevant viruses. The current global pandemic of COVID-19 caused by the SARS-coronavirus-2 as well as the constant spread of diseases such as dengue and chikungunya fever show the necessity of a comprehensive and precise analysis of plus-strand RNA virus infections. Plus-strand RNA viruses share similarities in their life cycle. To understand their within-host replication strategies, we developed a mathematical model that studies pan-viral similarities and virus-specific differences of three plus-strand RNA viruses, namely hepatitis C, dengue, and coxsackievirus. By fitting our model to in vitro data, we found that only small virus-specific variations in the model were required to describe the dynamics of all three viruses. Furthermore, our model predicted that ribosomes involved in viral RNA translation seem to be a key player in plus-strand RNA replication efficiency, which may determine acute or chronic infection outcome. Furthermore, our in-silico drug treatment analysis suggests that targeting viral proteases involved in polyprotein cleavage, in combination with viral RNA replication, may represent promising drug targets with broad-spectrum antiviral activity.

19.
PLoS One ; 17(7): e0271610, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35862421

RESUMO

BACKGROUND: Approaching epidemiological data with flexible machine learning algorithms is of great value for understanding disease-specific association patterns. However, it can be difficult to correctly extract and understand those patterns due to the lack of model interpretability. METHOD: We here propose a machine learning workflow that combines random forests with Bayesian network surrogate models to allow for a deeper level of interpretation of complex association patterns. We first evaluate the proposed workflow on synthetic data. We then apply it to data from the large population-based Study of Health in Pomerania (SHIP). Based on this combination, we discover and interpret broad patterns of individual serum TSH concentrations, an important marker of thyroid functionality. RESULTS: Evaluations using simulated data show that feature associations can be correctly recovered by combining random forests and Bayesian networks. The presented model achieves predictive accuracy that is similar to state-of-the-art models (root mean square error of 0.66, mean absolute error of 0.55, coefficient of determination of R2 = 0.15). We identify 62 relevant features from the final random forest model, ranging from general health variables over dietary and genetic factors to physiological, hematological and hemostasis parameters. The Bayesian network model is used to put these features into context and make the black-box random forest model more understandable. CONCLUSION: We demonstrate that the combination of random forest and Bayesian network analysis is helpful to reveal and interpret broad association patterns of individual TSH concentrations. The discovered patterns are in line with state-of-the-art literature. They may be useful for future thyroid research and improved dosing of therapeutics.


Assuntos
Algoritmos , Aprendizado de Máquina , Teorema de Bayes , Tireotropina , Fluxo de Trabalho
20.
Br J Pharmacol ; 179(18): 4575-4592, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35751875

RESUMO

BACKGROUND AND PURPOSE: Development and progression of heart failure involve endothelial and myocardial dysfunction as well as a dysregulation of the NO-sGC-cGMP signalling pathway. Recently, we reported that the sGC stimulator riociguat has beneficial effects on cardiac remodelling and progression of heart failure in response to chronic pressure overload. Here, we examined if these beneficial effects of riociguat were also reflected in alterations of the myocardial proteome and microRNA profiles. EXPERIMENTAL APPROACH: Male C57BL/6N mice underwent transverse aortic constriction (TAC) and sham-operated mice served as controls. TAC and sham animals were randomised and treated with either riociguat or vehicle for 5 weeks, starting 3 weeks after surgery, when cardiac hypertrophy was established. Afterwards, we performed mass spectrometric proteome analyses and microRNA sequencing of proteins and RNAs, respectively, isolated from left ventricles (LVs). KEY RESULTS: TAC-induced changes of the LV proteome were significantly reduced by treatment with riociguat. Bioinformatics analyses revealed that riociguat improved TAC-induced cardiovascular disease-related pathways, metabolism and energy production, for example, reversed alterations in the levels of myosin heavy chain 7, cardiac phospholamban and ankyrin repeat domain-containing protein 1. Riociguat also attenuated TAC-induced changes of microRNA levels in the LV. CONCLUSION AND IMPLICATIONS: The sGC stimulator riociguat exerted beneficial effects on cardiac structure and function during pressure overload, which was accompanied by a reversal of TAC-induced changes of the cardiac proteome and microRNA profile. Our data support the potential of riociguat as a novel therapeutic agent for heart failure.


Assuntos
Estenose da Valva Aórtica , Insuficiência Cardíaca , MicroRNAs , Animais , Modelos Animais de Doenças , Insuficiência Cardíaca/tratamento farmacológico , Ventrículos do Coração , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteoma , Pirazóis , Pirimidinas , Remodelação Ventricular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA